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We investigate the approximation of smooth functions by local trigonometric
bases. In particular, we are interested in the local behavior of the approximation
error in the LP-norm. We derive direct and inverse approximation theorems that
describe the best approximation on an interval by a finite linear combination of basis
functions with support in this interval. As a result, we characterize the Besov spaces
on an interval as approximation spaces with respect to a local trigonometric basis.
These local results are generalized to the approximation on the real line by linear
combinations which are locally finite. The proofs are based on the classical
inequalities of Jackson and Timan which are applied to local trigonometric bases by
the means of folding and unfolding operators. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

The classical theorems of Bernstein and Jackson relate the smoothness of
a periodic function to its approximation quality by trigonometric
polynomials. They are the first manifestation of the paradigm of
approximation theory that good approximation properties are equivalent
to smoothness. The theorems of Bernstein and Jackson continue to influence

'To whom correspondence should be addressed.

74

0021-9045/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.



APPROXIMATION THEORMS FOR LOCAL TRIGNOMETRIC BASES 75

the course of approximation theory, see for example [8, 10, 13]. In particular,
the recent invention of wavelet bases and related bases for L2(R) inevitably
poses the challenge to understand the corresponding approximation
properties.

In this work, we study the approximation problem with respect to local
trigonometric bases (see e.g. [1,3,6,9,22,23,25]). These new bases have
been developed in the wake of wavelet theory. Local trigonometric bases can
be constructed on an arbitrary partition of the real line, and locally they
resemble a trigonometric system. Specifically, assume that a partition of R is
given by an increasing sequence (a;),cz such that lim;, 1 a; = oo and
hj = ajy1 —a; >0, and choose ¢; >0, je Z, such that ¢; + €41 <aj+1 — aj,
J € Z. Then there exist window functions w; with suppw; c [a; — &j,a;+1 +
¢j+1] and with given smoothness, such that the functions

lﬁjk(x)tzwj(x)\/hECOS ((2k+1)x2_h“fn>, jeZ, keN, (1)
; .

J

form a Riesz basis for L?(R). For more details and references, we refer to
Section 3. This construction is extremely flexible and yields a surprising
diversity of Riesz bases for L?>(R). They include the Fourier transform of
original wavelet bases of Lemari¢ and Meyer [24] and the Wilson bases of
Daubechies et al. [12]. Approximation properties of such bases have been
investigated in [2, 4].

Wavelet bases are extremely efficient and successful in many applications
because they allow us to measure the local, in fact pointwise, smoothness of
a function [21]. Other bases, such as Wilson bases and Gabor frames, have
sometimes been discarded because they work with windows of fixed size and
the maximum possible localization is the size of the window. In part, this
deficit can be overcome by using local trigonometric bases since they admit
windows of variable size.

Our goal is to show that the local smoothness can indeed be described and
characterized by local trigonometric bases, in particular by Wilson bases.
For simplicity, we will restrict our attention to local trigonometric bases
with the two-overlapping property. These bases are used in most
applications of local trigonometric bases, e.g. signal segmentation, and
can be handled with only moderate technical difficulties.

We will characterize the Besov regularity f € B;‘Lq([ar,asﬂ]), where r<s,
by means of the approximation properties with respect to a local
trigonometric basis (1) associated to a partition {a;:je Z}. In analogy
with periodic functions that are approximated by trigonometric polyno-
mials, we will approximate f locally by windowed trigonometric poly-
nomials. To take into account the non-uniformity of the partition, we have
to adjust the local degree of approximation on each interval [a;,a;11].
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Specifically, for given n e Ny, set n; = (@L where [x] is the smallest integer
which is greater than or equal to xeR. Now let ¥, be the linear
finite-dimensional subspace of L*(R) defined by

s n—1
Vs = {g = Z Z a/klpjk aji € C} (2)

As a special case of our main results (Theorem 6.1), we may
now formulate the characterization of the Holder—Lipschitz spaces
B}, (D), 0<a<1, on an interval /. Recall that these are defined by the
condition | f(x + k) — f(x)|<C|h|* for x,x + h el

THEOREM 1.1.  Assume that w; € B%,  (R), for j=r,...,s and some a,
O<a<l.
If /e Bgo,oc([ar — & — 7,541 + &+1 + 7)) for some y >0, then

infge‘[’,,m ||f - g”C([u,Jrs,,a.\,H78.\,“]) = 6(n7a)~
COVHJEVSQ])/, lfinny'Pm ||f - g||C([a,.71;r,aﬁ1+z:s+1]) = (Q(nil)’ then
feB (ar+ e a5 — e

While this result falls short of characterizing the pointwise smoothness as
could have been done with a wavelet basis, it accomplishes the next best
goal, namely the characterization of the smoothness on an arbitrary interval
with endpoints in (a;).

The idea for these characterizations is relatively simple. Any f has an
expansion of the form

) ) 3)

0= \[ ( 5 cos( @k + 17,

with respect to the local trigonometric basis {y;}. If the windows w; are
compactly supported, sufficiently smooth, and satisfy the two-overlapping
condition, then the periodic function fj(x) = >, @i cos((2k + 1)5;n
captures the local behavior of f on supp w;. Consequently, the smoothness
of f; and thus the local smoothness of f on supp w; can be determined by
means of the approximation properties of f; by trigonometric polynomials.
For the technical execution of this idea, we will make use of Wickerhauser’s
method of unfolding operators [28,29]. Our results will be in the style of
classical approximation theory: we will first prove a Jackson-type theorem
(Theorem 4.1) and then an inverse theorem for local trigonometric bases
(Theorem 5.1).
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Let us mention a few related ideas. The observation that the local Fourier
series f; capture the behavior of f on [a;,a;; (] has lead to a characterization
of L? by means of Gabor frames [16, 18]. These results came as a surprise
because it had been claimed that Gabor-type expansions or Wilson bases are
not suitable for the treatment of L” questions [11, p. 126]. Secondly, let us
emphasize that our results concern the linear approximation by functions
taken from the subspace ¥,,,. The case of non-linear approximation with
local trigonometric bases has also been treated and lead to results of a
completely different nature. For instance, in the n-term approximation
problem, f is approximated by a linear combination g = ) by} % with at
most n non-zero coefficients by. The asymptotic behavior of the
approximation error then determines a new class of function spaces, the
so-called modulation spaces [19]. These are intimately related to the phase-
space (or time-frequency) concentration of functions [15, 17], but have not
yet appeared in approximation theory.

The paper is organized as follows: Section 2 surveys a few technical
properties of moduli of smoothness, Section 3 provides the required facts for
the construction of local trigonometric bases and describes the method of
unfolding operators. In Section 4, we state and prove a Jackson-type
theorem for local trigonometric bases. Theorem 4.1 makes precise the idea
outlined above. The inverse approximation theorem for local trigonometric
bases is proved in Section 5. In Section 6, we give a complete
characterization of the Besov spaces B, (/) as approximation spaces with
respect to a local trigonometric bases.

2. MODULI OF SMOOTHNESS AND BESOV SPACES
In the sequel X?(/) may denote any of the function spaces L?(]) if 1< p
<00, or C(I) if p= oo with an interval I =[a,b] = R, —co<a<b<o0.
Analogously, X) denotes the space C», of 2n-periodic continuous functions
if p=o0, and if 1< p<oo the space L) of 2n-periodic p-integrable
functions. Finally, X? can be X} or X”(I) for any interval /.
DErINITION 2.1. The mth differences of a function f are defined by
AP f) = A7 fe+h) — A7 f(x) and  A)f(x) = f(x).
The mth order modulus of smoothness of f € X?(I), I = [a, b], is defined by

"™ (XP(D), f,0) = supyes) 145 flxrqab—mn)-
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For f e X} we define analogously
o"(XF,, f,0) = SUDje(0,6] ||4‘an||x;;-

We first study some properties of the modulus of smoothness under
pointwise multiplication. Using the recursive definition of the mth difference,
we obtain a Leibniz rule of the form

m

A(fPx) = ('Z ) Ay f A, " g(x + ). (4)

u=0
This implies for f € X?(I) and g € C(I) that

m

o"(XP(1), f9.0)< Y (IZ ) (X P(D), [, 0™ H(C(1), g, 0). ©)

u=0

DEerFINITION 2.2. The Besov space Bj;;’;(]), >0, me Ny, is the set of all
f € LP(I) such that the semi-norm

ez { (X om ), fofeoa1 ) i 1<g<oo,
By = —a,m .
SUP;e(0,00) rw (Xp([), f, f) if qg=

is finite. A norm in B;‘;f;’([) is defined by

I sy = L ey + L LBz

We will need some properties and equivalent norms of Besov spaces,
which we list in the following lemma.

Lemma 2.1. (1) If O0<oa<fi<m and 1<qy,q>, p<00, then B’;’;](I) is
continuously embedded in By (I).

(i1) For any 0<a<my<my and any 1< p,q< o0, the semi-norms | - |B;.ZI(I)
and | - | B ) are equivalent.

(iii) For any a=0, me Z and any 1< p,q<00, the semi-norm | - |B;jg(1) is
equivalent to the discretized semi-norm

~ 1/
( > (Zk“w’"(Xp(I),ka))q) q if 1sq<oo,
k=0

Supgen, 240" (XP(1D), f,275) if q=oc.

E3 —
\flgzmay =

For the proof we refer to [14, Sect. 2.10].
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Part (i) of the lemma allows us to define B7 (/)= B}7 (/) for m—
1 <o<m without ambiguity. However, the other equivalent norms for B7, |
(/) will be useful later.

LEMMA 2.2. Let >0, 1< p,g<o0.
W) If feB () and g € B, (1), then fg € B, (I) and
||fg||B§M(1) < C||f||B§C,q(1)||g||B;#(1)

(i) If f e B () and |f(x)|=x >0 for x €1, then %e B, (1) and ||%|
|B&q(l) is bounded by a constant which depends only on x, o and ”f”Bi“,(l)'

Proof. (i) For m>oa>m — 1, we can choose a,, u =0,...,m, such that
op = 0, o, <p when pu >0, and o, + a,,—, = . Using the discrete semi-norm
of B}, (I) and (5), we first estimate in the case g <oo that

00 1/q
1905, ) = ( Q"o (X (1), fy, 2"»4)
n
[0¢]
< (

m g\ /4
> (2“’” > ('Z) " M), £, 2 (X (D). g, z">) )

=0
n=0 u=0

3

n m o8]
< (@ (D), £,
u

=0 n=0

=

1/q
xo"(X?(I), g, 2"))q) :

If >0, then the inner sum over n is majorized by

~ 1/q
sup 2% H(C(I), f,27") (Z 2" "X (1), g, 2"))q>

I’IENO n=0

= |f|§;@;¢(,)|g|§;{t o SCA s ollglls:, o),

q

where we have used the embeddings of Lemma 2.1(ii).
If © =0, then o, = o and we estimate the g-norm by

o 1/q
( > @rw™(C), f, 2")||g||Xp<,>>q> = /T llgllxea.
n=0
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Altogether we have shown that ||fq||Bu DS <C| S g, q(])IIgIIBy - The proof for

p = 00 is similar. "
(i) We will show by induction on m that

|
f
If m =1 and a< 1, then the identity

Ny o - Anf®
Ah(f)() ey

implies that ||%||B§F,q(1) <K—12||f||3217q(1). For, m > 1, we obtain by (4) that

m 1 m—1 1 = m—1 m u
A (f) (x) = A7 <Ah (f))(x) = 2; y S+ um)A59(x),
=

— 1 1
where g(x) = — mm

|5

2m 1
< S 171, (©)
BY, ()

As in (i), we conclude that

. < Cm||f||B°§;’L(1)||g||3:;«”’*1([a,b7h])
B

2
<Gl gz oy

f

b
Bz;(},m—l o

where I = [a, b]. By induction hypothesis and Lemma 2.1 we obtain (6). I
Furthermore, we will need the following lemma to combine local estimates.

LemMMA 2.3. Let I;, j=1,...,n, be a collection of finite intervals, I =
U;Zl 1;, and assume that every x €I belongs to the interior of at most €
intervals I;. Then there exists a constant C,, independent of 1;,€, p and f such
that for m e N

> "Ly, £, <Chto"(LP(), f,8), 1< p<o,
J=1

sup o"(C(L, f,0) < Cule"(CD, 1,9

Proof. This follows from the equivalence of averaged moduli of
smoothness with ordinary moduli of smoothness and a simple estimate
for averaged moduli of smoothness [14, Chap. 12, p. 373, inequalities (5.16)
and (5.17)]. 1
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3. BIORTHOGONAL LOCAL TRIGONOMETRIC BASES

In the following, we will consider biorthogonal local trigonometric bases
in the two-overlapping setting of Chui and Shi [6, 7]. We briefly recall the
construction of these bases.

Assume that a partition of R is given by an increasing sequence (a;);cz
such that lim;_, + a; = +00 and &; .= a;y; —a; > 0. Given a sequence of
“overlap widths” ¢; > 0, j € Z, we set a/ = a; + ¢; and a; = a; — ¢;. We will
assume throughout that ¢; + ¢;1 <A;. Then the intervals (a;, ) jEZ, are
pairwise disjoint. Next, we choose a sequence of window functlons wiiR —

C associated to the partition {a;} and assume that
suppw; < [a;, /+1] (7
Then supp w; N supp w, has measure zero if |j — r| > 1; this is the so-called

two-overlapping setting.
Define the trigonometric system Cj and the cosine wavelets i, by

Ci(x) = \/hzcos( 2h )
J

Y (x) = wix)Cie(x), jeZ, keN;y. 8)

and

Then {Cj :ke Ny} forms an orthonormal basis of Lz([aj,aﬁl]) for each
J € Z, and for a suitable choice of windows {w;} the set {y; :j € Z, k €Ny}
is a Riesz basis for L2(R). The trigonometric functions Cj in definition (8)
can be also replaced by

[2
Si(x) = h—sm( 2h ), ke Ny
j

\/I/, if k=0; j even,
Dlx) = § [ cos (k'

\/,%sin(knx;ff) k=12,...; jodd

or by

k=1,2,...; jeven,

as well as suitable mixtures of them (cf. [1,3,6]). The results in this paper
hold for all types of local trigonometric bases, but for simplicity and



82 BITTNER AND GROCHENIG

convenience we shall state and prove them only for local cosine bases. The
simple modifications are left to the reader.

The properties of {;} are best investigated by means of the function-
valued matrices

w;(x) —wy_1(x) )

w;(2a; — x) wi—1(2a; — x)

Mj(x) = Mj,w(x) = (

(cf. [6,7]) and by the associated total unfolding operator %,, (cf. [3,22])
defined by

Uy f(x) = wix) f(x), xelaj,a;,), jelZ,

Uy [f(x) o ' f(x) . .
<%wf'(2a,- - x)) o MM( fQa; — x)>’ xe(aa;), jel,

@/Wf(aj) = wj(aj)f(aj), ] el.
This definition determines %,, f(x) uniquely for every x € R and we have
%W(X[aj,aj+|)cjk) = lpj/c'

Since %, maps the orthonormal basis {x[a,’aH]]Cjk} of L*(R) onto {Y}, the
set i forms a Riesz basis of L*(R) if and only if the unfolding operator %,
is bounded and invertible on L*(R) (cf. [3, Theorem 9.6]).

The Riesz bounds of {i}; :je Z, ke Ny} are N\, 2 and |21 .
They can be calculated precisely in terms of the window functions w; and the
matrices M;(x) (see [6, Theorem 3]). We will use the following fact: if {iJ;} is
a Riesz basis for L?(R), then sup ez |lw;llo <00.

Using the biorthogonality condition

3;r0ke = o Wye> = U wYiay.ap0)Ci)s U, = <X[aj,a/+1]cjk’%:§l;r[>’
we find that the dual basis is given by the functions

l/;jk = (%I)il(X[a_,,a_,‘ 1Cik) = w; C.
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The explicit form of the dual window functions W; (see [6, Theorem 2]) is

1

. + —

~5 if xelaj,a;,]
wj_1(2a;—x)
=l if xe(a7,a)),

(x) = det(ﬂ;xx) | i )
Wit1(£a41—X
M) if xe (aj+ls +1)
0 otherwise.

Consequently, the inverse unfolding operator is U, ! = @/t and we obtain
that

u, f(x) =

( ) = w0 /),  xelaf,ai],

ay—1
1O (S
w0, fQay—x)) T\ fa; =)

()
B M;;V(x) (f(Zaj —x) ) - e,

wlf(a/) f(a/) = W](a])f(a_]) JE Z.

( )

Since the dual basis of a Riesz basis is a Riesz basis, we deduce the following
fact.

LemMA 3.1 If (Y} is a Riesz basis for L*(R), then

inf W)l =%, >0 and inf inf det M;(x)>1, >0
jEZ ]EZ xe[a a]

for some constant x,, > 0.

For the characterization of the local smoothness of functions by means of
local trigonometric bases it is important to understand how the smoothness
of the w;’s is related to the smoothness of the dual windows w;.

THEOREM 3.1.  Assume that the collection {\} ;. } is a Riesz basis for L*(R). Let
JE€Z, 0>0, and 1<g<oco. If [[wllp (R)<K re{j—1,j,j+ 1}, then
(1152 SRS <K, where K depends only on K o and the constant k., of Lemma 3.1.

In partzcular if supjez ||Wj||31 (R)<K then supjcz ||W/||B’iv (R)<K
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Proof. Since the windows are continuous, Lemma 3.1 implies that there
is a dp >0 such that det M,(x)>% for x € [a, — do,a; + dol, r€ {j,j+ 1}.
Thus, by Lemma 2.2(i) and (ii) we conclude that the functions

wj,1(2aj —X) and  0a(x) = Wj+l(2aj+1 —X)

L —— - xeR
det M (x) det M (x)

vi(x) =

are contained in B ([a; (30,a +d0]) and B% ([a}, 60, 1+ 00D,
respectively, with norms bounded by a constant dependlng only on K o and
K. Note that support condition (7) and definition (9) imply that

0 if xe l[a; — (30,6{;],
= 1
u if xelaf,al + o),
wj(x)
! if xe| -9 ],
X a 0,d
va(x) = ¢ W) aa i
0 if x e[aj,y,a; + dol.

Furthermore, from Lemma 3.1 and (6) we know that for J, sufficiently small
||W/|| B (af —dar,, +o0)) 1s also bounded by a constant which depends only on K,
o and k. If aj > a Lemma 2.3 implies

||Wj||3g,q(u@) <lv1lpz, J(lay —d0.af +30) + ||Uz||3ﬁ 1—d0.a, +00)
1
+ —
Wills, (af ay, D)

<Kk.
If aj, = al, we use that for x € [a — S, at al + o]

Wi(x) = v3(x) = 01(x) + v2(x) — x€la) — do,af + do].

wi(x)
Again by Lemma 2.3, we obtain

;ll5, @) <llorlls o —s0arp + 1021lBz, a0 af, +d0))
+ losllsz, 1t ~o0.af +o0D

<K’

and the theorem is proved.
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4. A JACKSON-TYPE THEOREM

Next, we want to investigate the local approximation quality of a smooth
function by a finite subset of the local trigonometric basis {y;}. Since
Yy = J?/W(x[%a”] )Cjk), we have an error estimate of the form

Hf— > oy <|1.||
rk

X?(aj.a;1])

~1
Uy S~ Z % a;) Ck
Jik Xr(R)

In other words, the error of the local approximation of f by a finite linear
combination of elements from {y;} can be described by the error of the
approximation of %, '/ by certain trigonometric polynomials in laj,ajt1].
This situation is fam111ar from the classical theorems of Jackson and
Bernstein which characterize the smoothness of the approximated function
by the order of approximation with trigonometric polynomials. Usually, the
function %' f = @l f has discontinuities at the knots @; and so these
results are not appllcable directly, but %w S ) has a smooth periodic
extension, which we will study first.

aa1

DErFINITION 4.1.  For f EX”([af,aﬁl]) (or f e XP(R)), the operator &
is defined by

Fif @) =3 1 <W/‘ (aj + 2hjr + %X)f(aj + 2hir + %x)

reZ

2h; 2h;
+ W, (aj + 2hr — #x)f(aj +2hr — #x)),

where the windows Ww; are given by (9).

Since W; has compact support, the sum in (10) is locally finite and defines
a 2z-periodic function. If f(x) =0 for x e [a;,q].il], then #;f =0 by the
support properties of w;. Thus, #; acts only on functions with support in
[a+ ]. Furthermore, for x € (aj,ajﬂ) we have

Jf( % ") =, /()
=W;(x)f(x) + W;(2a; — x) f(2a; — x)
= wi(2aj1 —x)f (a1 —x), (11)

where the second and the third term occur only when x € (a;,a;) and x e
(a;+],aj+1), respectively. The technical properties of #; are listed in the
following lemma.

J° /+1
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LemMA 4.1, If (Y, =w;Cy:jeZ, keNo} is a Riesz basis for L*(R)
comsisting of continuous functions, then each F ; has the following properties:

(a) Parity: 7, /(x) = 7,/ (—x) = — 7,/ (n — x).
(b) Boundedness: 7 is bounded from X*([a; , +1]) (or from XP(R)) into
1 < p< 00 and the operator norm can be eslzmated by

\ P
||f,-||Xp([aj,a;ﬂ])ﬁx;;<2(h—j> [

2n’

(c) Smoothness: Let f € XP([a; — 7, a,'++1 + 7)) for some small 0<y<ej . If
2 L0, then the mth order modulus of smoothness can be estimated by

I/p m
S ey

j =0
w xr(fa: + 2h)
x o' X ([Clj - yyaj+l + y])sf975 .

(d) Reconstruction formula: A function f e XP(R), 1< p<oo can be
reconstructed from the 7 f, je Z, by

=3 w07, f (nx 2—/:!/)_ (12)
J

jez

(e) The image of W, = w,Cy is

2
F W = 5]rfcos((2k+ 1)), j,reZ, keNy.

Proof. Property (a) follows easily from the definition.
(b) The parity properties imply that #; /" is completely determined by its
values on [0,%]. Therefore, we obtain for 1< p<oo that

n/2 o [YH x—a\l|?
17511y = / A = / y_}.f(n - 1>‘ "
Jj Ja i

:%</ W00 + 52a, = 0)f Ca; — )| d
J aj;

j

N /+‘/+l |Wf(x)|pdx+ / [+l |Wf(x)

—Wwi2aj11 —x)f Qa1 — X)I”dX>.
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Since |a + b|” <277 !(|a|” + |b|?), we obtain

Vs ‘1/++1 E—
||97jf||fg <2phf [W;(x) f ()| dx
d J

and, consequently,

17y <20 IIWJIIP ||f||Lp T
J

If p=o00 and f e C(R), then the continuity of W; assures that #;f is 2n-
periodic and continuous. Using the two-overlapping property again, we

obtain
X —a;
1% flle,, = sup ‘«%f (n 5 ’)
xelaja;i1] J
(c) Note that, for given o> 0, A4;'(f(a-))(x) = (47, f)(ox). Writing n = —-h
the mth order difference of % f is given by

GF ) =D (1 (A’"(W]f) (a, +2h r+2ix>

rel

<2||Wj||C(R)||f||C([a;,a;+l])-

+ AM(wjf) (aj + 2hir — %X>)

Hence, 4}'(F ;f) is 2n-periodic and satisfies the same parity conditions as
F;f. If n<i and xe€[aj,a;1], then x +mny€[a; a;, 1+1] and by (11) we

conclude
Fif (n al

Hence, for %5<%
wm(X;p‘gijs (5)

2 aj+1 __ —
—  sup ([ / | A7 (f T + A7 (fF7)(2a; —x)
J aj;

yf") = A (fW))(x) + A (fW))(2a; — x)
J

— A 2ajr ).

he(0,(2h; /m)d]

1/p
— AP(fw) a4 — x)I? dx)

N

2\ 1P -
3 _> sup | AFW)llxra —mhat
hj he(0,(2h; /7)d] h A NX P ([ay —mhaf )

o\ /P - o,
3(h> " (Xp([aj = %45 +y]),fw,-,nf5) (13)

7

N
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Inequality (13) follows from the triangle inequality, the substitutions x —
2a; —x and x — 2a;;; — x in the second and third integral, and the support
condition supp A7(fW,) < l[a; — mh,a;,]. The desired estimate now follows
from (5).

Note that 45(fW;) in (13) does not depend on values of f outside the
interval [a; ,a], ] because supp fW; < [a;,af, ]

(d) For x € [a},a;, ], r € Z, the identity

+
Jj+1

> W@z (nx — "f') = W T, f () = W) = f()

jeZ Zhj

follows directly from the definition of % f; and the definition of the dual
window (9). If x € [a, ,a], r € Z, we obtain by (9)

o (+5)

jez
= W), (x) f (x) + W, (2a, — x) f(2a, — x))
+ W1 )01 (0) f(X) = w122, — x) f(2a, — X))

_ w120, — x) w24, —x)
= f(x) (wr(x) Qe M, () + wy—1(x) det M, (x) >
. Wr—1 (X) Wr(x)
+ f(Q2a, —x) (Wr(x) de M 2a, —n) 1 m>

= J).

Since r € Z was arbitrary, (12) holds for all x € R.
(e) Using Cy(x) = Cix(2a; — x) = —Cj(2a;+1 — x), we obtain

n/2
= [ A cos@e+ s

\/hzj /aj " (l//rk(x)m + l//rk(x)wj(zaj - X)

= Vu()W;(2a 41 — x)Cjx(x) dx

2 a}:’] ~ 2 - 2
\/%Lj Vo) e = E<wrk’¢j[> = \/h:jéjrék(.

Since {—2=cos((2¢ + 1))} is an orthonormal basis for L*([0,%]), assertion (e)

follows immediately. &
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Remark 4.1. Note that according to the reconstruction formula (12), the
trigonometric series % ; f describes the local behavior of f on the interval
[a,a;+1]. The approxmlatlon properties of 7 ; f* will therefore be related to
the smoothness of f on [aj,a;+1]. Therefore, (12) provides the precise
technical tool to investigate the local smoothness of f in terms of local
trigonometric bases.

We are now ready to consider the approximation of smooth functions by
elements of the ﬁn1te dimensional space ¥, defined as in (2) by ¥, =
{g = ZJ S a,knpjk aj € C}, where n; = [zn . We consider the best X 7-
approximation

EY(xrU = inf —gllxwn = inf || f = glly»
. (X2, 1) g Il = gllxr@ gégmllf 9llxe(ry

n,—00,00

on the interval I < [a/,a,,,], —0o<r<s<oo. Note that every g € ¥, has

its support in [a;,a], ] and that It o o is a windowed trigonometric

polynomial of degree 2n;. Therefore “it is natural to connect the
approximation by ¥, with the approximation of periodic functions by
trigonometric polynomials. Denote the space of 2n-periodic trigonometric
polynomials of degree at most n by

T,,, — {P: Z Ckeik':CkEC}

k=—n

and define the subspace T°! < T, by

n—1
T,?] = {P = Z crcos((2k+ 1)) ¢ € (E}
k=0
={PeD,:Pkx)=P(—x) = —P(n —x)}.
We consider the best approximation

B )= jnfl 1S = Pl and BOE /)= inf 11/ = Pl

of a function f € X{, by a polynomial from 7, and 7!, respectively.

LemMma 4.2.  If f € Cyp satisﬁes the parity conditions f(x) = f(—x) =
—f(TC - x)a then E2n( ) f) EOI( 27 f)

Proof. Define the reflection operators about 0 and 7/2 to be Ry f(x) =
Jf(=x) and Ry f(x) = —f(x —x). Then [[Roflxz = [IRifllyz = II/]lxz-
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Now assume that f = Ry f = R, f. Let P € T, be the unique polynomial of
best approximation, i.e., ||/ — Plly» = Ex(X], ) (cf. [5, Sect. 2.1.]). Then

If = RiPllxy = IRjf = RiPllxg = IIf = Pllxy = Eau(X5. £)

for j =1,2. Since P is unique, we obtain that P = RyP = R\P or P e T°.
Consequently, E)' (X5, ) = ||/ = Pllyr = Ex(XS, ). 1

The combination of Lemmas 4.1 and 4.2 allows us to apply the classical
theorems of Jackson and Timan to the problem of approximating functions
by T}’H‘S'

THEOREM 4.1. (A Jackson-type inequality). — Assume that the set {{; =
w;Cy : jeZ, ke Ny} is a Riesz basis for L*(R) with continuous windows w;
and that r,s € Z, r<s. Then, the best approximation of f e XP([a, —7,
al +y]) with respect to s, for 1 < p< o0, and <y <e;, can be estimated by

.....

X ( Z sup o™k <C([R§), Wj,%)

=0 ST s

1
x o <X”([ar —y,al, +7D), f’2n>) (14)

The constant K, depends only on m.

Proof.
Step 1: Construction of a good approximation of f in ¥, Let P; =

%ZZ’;OI aj cos((2k + 1)) € T,?jl be the polynomial of best approximation
for #,f,j=r,...,s, and let ®; be the scaled error of approximation defined
to be

nj—1
X —daj
@,(x) = e%jf‘(ﬂ 2hj) _ Z ajkc_jk(x).
J k=0

By definition of P; and &;, we obtain

27n
ES XL 7 ,f) = | f — Pl = (

1/p
h) 19 ey (15)
J
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It 1s now natural to take the function

s ni—1

Jgo = Z Z ajk‘pjk € Vs (16)

j=r k=0
as the appropriate approximation of f. Since
EyllP(Xp([a:ra a;rl])s f) < ||f - gOHXP([a:r,a;rl])?

it suffices to further estimate the error || f — goll.
Step 2: Pointwise and LP-estimates of f —go. Using Lemma 4.1(d)
and the condition supp wjg(aj*,aji]), we express the pointwise error

S ) = go(x) as

s o nj—1
S0 = go) = 3 w0 1) (Zf (nxz}:f) -3 a_,-kc_,-k<x)>

j=r k=0

= Wit D). (17)
J=r
If 1 < p<oo, we apply Holder’s inequality with lp+ % =1 to the right-hand
side of (17) and obtain

1/p

N l/q N
|f(x>—go(x>|<(Z|wj<x)|‘f> <Zx[a,,a;+l](x)|¢j(x)|f’> .y
J=r =

Since the windows w; satisfy the two-overlapping condition, the term in (18)
that contains only the w;’s can be estimated uniformly by

) 1/q
S
1
Sl | < sup (willZg + il <24 sup [wlle)-
J=r JeZ jez

The cases p =1 and oo are similar.
Taking the X”-norm leads to

1/p
s

_ 1/q . e
I/ gOHXl’([ar‘ ,a;+l])<2 Sllel%) ||W/||C(R)< ;:r: ||(p/||xp([aj,af++]])> :

Since @; possesses the same parity properties as the C’s by Lemma 4.1, we

obtain ||¢j||§p([a/_,’aj++]])<2||<15j||§,,([a/_’a,+l]), and combining with (15) we obtain
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the estimate

1/p
I = gl <217 sup Il (Z;Em( i jf)”> . (19

Step 3: Application of Jackson’s inequality. Now Jackson’s Theorem [5,
Theorem 2.2.1] applies to the periodic functions .#; f and yields the estimate

Em( 2n’ Jf)<c a)m 271’ij (Zn/) )<C @ (ZTE’JJf 4h )

.. 2nh;
where we have used once more the definition n; ==

Step 4: Combination of all estimates. Next, we substitute the estimates for
the modulus of smoothness of #; f from Lemma 4.1(c) into (19) and use the
triangle inequality to arrive at

I/ = gollyrgara;, ) SCm-3-2 jillpq willem)

s p
£ () (g omed
n=0 j=r
1\ ? 1/p
x o (XP(I%- — +v]),f,2n) ) .

Note that the factors Zh/ have canceled everywhere so that the increment in
w* is always 1ndependent of j. This is the very reason to introduce the
local degree of approximation n;.

To achieve the final estimate, we apply Lemma 2.3 and obtain

s 1\” Ly*
Jj=r

1
< m=i( O(R), W, —
s ( ®. % Zn)

s 1 p 1/p
X ( Z wt (XP([aj —7.a) +y]),f,2n> >

=

1/p

1 1
<C, sup " H(C(R) w],2 ) oM (XP([ar‘ -, a;l +7)), f,5>

_] =r,.

and the main estimate (14) is proved completely. 1
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Remark 4.2. If we take the limits » > —00, s = 00, we obtain a global
Jackson-type inequality of the form

m B . l
EY(X"(R), f) <K, sup||wj||c<R)< > sup o” “(C(R), wj,z—)
jeZ jeZ n

u=0 JE

X o (XP(IR), 7, %) ) . (20)

Here ¥, .~ consists of functions g = Z;ez( S oaixCie)w;. Since the
sum over j is locally finite and ¢ is essentially a trigonometric polynomial of
degree 2n; on [aj,a;y1], there are no convergence problems in the
approximation by ¥, _~ -

For (20) to make sense, we clearly need a uniform estimate for the
smoothness of the dual windows. See Theorem 6.2.

5. AN INVERSE APPROXIMATION THEOREM

Next, we prove an inverse inequality for the approximation by functions
in the subspace spanned by ¥,,.

For the estimate of the mth order modulus of smoothness of a periodic
function f € X), we use Timan’s inequality [27, Sect. 6.1.1]

o (X tr) <8 Z(w Y EGL £ e

Because of the monotonicity of E,(X), f), (21) implies immediately the
following modification:

1 n {—1
m XP - £+ ) 1" 1E‘ ; ,
w < 20 J > (fl’l)m Lo Lo (V + 4+ ) {47 ( 2n f)

n
Cm

<N 0 DB ), 22)
v=0

THEOREM 5.1.  Assume that the set {Yy =w;Cy:jeZ, keNoy} is a
Riesz basis for L*(R) so that
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Then, the mth order modulus of smoothness of f € X?([a; ,a],|]) for —oco<r
<s< 00 can be estimated by

m _ 1
() (Xp([a;L’aHl])’ f: %) S Lm

m—u 1
x sup Il Z ( sup o *(C(R),wj,%)

...... J=FesS

x—z 0+ D EY (X (g M]),f)), (24)

where 0 = et 1 and L,, is a constant depending only on m.

Proof.

Step 1: We first relate the best approximation of f by ¥, to the best
approximation of the #;f’s by trigonometric polynomials. Again, we only
deal with 1< p<oo and leave the modifications for p = oo to the reader.

Since ¥, j_1 42 is a finite-dimensional subspace for each j € Z, there exists
a function g; € ¥, j_1 j4> such that

IlLf = gj”XP( Sal) = ‘I’inr,lfl,+ ||f*g||Xﬂ([a‘;,a;jrl])

=E,(X"((a; ,a},\], /)

Now Lemma 4.1(b) implies that

1/p
T n ~
W7f =7 ,9llxr <2(h—j) Willcallf — gi||xv([a;,aj++l])

1/p
4
<) s WlawEL 00 07 1)
J

H=T sy

As a consequence of the two-overlapping condition, we have

4 : p
ZE X7([a; @], )7 < jnf Zj 1 = 918 a1

n,—00,00

<2E, (X"(la, ,a},\]), )7
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Set ¢; = f%h then n¢;>n; and thus
N

hj h;
Z jEnf/( znafjf)p Z jEn,( 2n"/.ff)p

Jj=r Jj=r
S .
< YyEr - F g
- T ’ TIMx)
J=r

<2rt! Sup. Wi 1E gy En XP(a, s alD), )P (25)

B

Step 2: Applzcatlon of Timan’s inequality (22). Since {; =
’(1 + 7 0, we have for u>0

S

hj M T 4
§ Lo (xp, 7 f
z ( m /f’2hj9n>

J=r
s
h; 1\?
< § _Jwﬂ X/”f ,—
A w7 if nl;
= J
p s

P
C,u hj n - ,
<pir ; O+ D' E (XL 7)) | (26)

j=r

By triangle inequality and (25), we obtain

s B, , p\ /P
H 7
P (Xzﬂ"/ff 2 en)

J=r

1/p
Cu Z ( + 1)# 1( Z jEvf 27{7 jf)p>

] r

<2WPHirp *‘, sup [l Z v+ D E X P (e al ). f). 27
v=0
Step 3: Estzmate of the modulus of smoothness. Applying Lemma 4.1(d)

and (5), we obtain that

1
W™ (Xp([ajr, ajer])’ f, %>

jtl1 _
= " <Xp([a7_’ aj_+2])» Z Wigif< al)
=

Jj+1

<> o (et omrr (v 50 ) e

i=j




96 BITTNER AND GROCHENIG

o hi I/p i m m— 1
S (5 () ewmg)
i=j =
XwM<X2”’/’f 2 0n>>

Using (a + b)? <27~ (a? + bP) and (28), we conclude that

1\? s—1 1\?”
o (b sgn) € 3 o (X001
J=r
<y (" w’"“(C(R),w,-,l)
j=r T u=0 H On

p
I
e ( w7 il 2h0n)> '

Applying the triangle inequality to the last expression, we obtain
o (X7(at as D o
ro%s+11sJ On
o~ [m ~ 1\ 4
<5 () (E(ome)?

- p\ 1/p
X ot <X2n,</’]f, m) > . (29)
J

Now, the desired inverse inequality (24) follows by substituting (27) into
(29). 1

Remark 5.1. Note that the term

n

> v+ ) EXP(a, . a),). )

v=0

corresponding to u = 0 can be replaced by || /1y, 1 because we have
XL, Ff,6) = ||,/p,jf||xp in inequality (26). However this does not
affect the asymptotic estimates for o"™(XP([a),a 1), f,0), 0 = 0 +.
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6. APPROXIMATION AND SMOOTHNESS

We can now use our results to show equivalence of approximation order
and smoothness.

DEFINITION 6.1.  The approximation space 45, (), o > 0, is the set of all
f € LP(I) such that the semi-norm

[e'¢] l/q
(EIQ”Eﬁ@WULﬁV> if 1<g<co,
Iz oy = n=0
sup (2™E3,(X?(I), f)) if ¢=o00
I’IEN(]

is finite. A norm in 4%, (1) is defined by [|flLez ) = 1/ leray + 1/ 1z, 0)-

We need a discrete version of a well-known Hardy-type inequality with
power weights (see also [20,26, Theorems 326, 327]).

LEMMA 6.1. Let peN, O<a<pu, 1<g<oo. If ap=a;= --- =0 is a non-
increasing sequence, then

o on q 0
Z (2"(“‘“) Z (v+ 1)“‘lav> <C Z ("™ ay 1)1
n=0 v=0 n=0

Proof. Choose ¢ > 0 such that « + e<pu. Since a, is non-increasing, we
obtain (by splitting the sum into dyadic blocks)

2" n

S+ la,<C Y 2May
v=0

v=0
1/q

n Vd 1
<C/< Z 2zvql> ( Z 2(;¢e)t’qagv—1>
v=0 v=0
n 1/q
cor($aome )

v=0

After changing the order of summation, the lemma follows from the estimate

00 2" q 0 00
Z 2n(17,u) Z (V + l)yflav <C//q Z 2(;¢—e)vqagv_l Z 2n(aﬁu+é)q
n=0 v=0 v=0 n=v

00
<CUS @%@ )
v=0
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We first characterize the local Besov regularity in terms of the
approximation properties by a local trigonometric basis.

THEOREM 6.1. Letr,se€Z, 0 >0, and 1 < p,q<o0 be given. Assume that
the set {\y . = w; Cy:je€Z, ke Ny} is a Riesz basis for L*(R) such that w; €
Bgo’q([R)forj =7,...,S.

(@) If feB, (la, —7.a L+ D for somey>0 then f € 43, ([a N )
(b) If f e 4}, (a, . al,\]), then f € B, ([af,az ).

Proof. (a) We use the Jackson-type inequality of Theorem 4.1 to
estimate the approximation space norm for a<m<o + 1 and 1< p<oo as
follows (and leave the obvious modifications in the case p = 0o to the
reader):

0 1/q
s e p = ( 3 @EELX), f))")
n=0

o0 m
<K sup [wjllem <Z (2“" > sup " H(C(R), 1,27 7)

J=T 5y n=0 u=0 J=l s

(X7 ([ay —7,a5yy + 9D, 1,27 D)) . (30)

Since sup,_,
inequality that

@MW) < D00, " (W), we obtain by means of the triangle

|/ L 1 ,H])\Km Sup Iwillcm
> Z(Z@“ "HCR), W, 27
Jj=r u=0

1/q
x "X P(la; —y,al, +9D, f, 2”1))q> : (31

We have already seen in the proof of Lemma 2.2(i) that the g-norms are
majorized by C||W;llg: S wamﬂl)”f”B“ (la- —p.a’,, +3)" Since Ww; € B%, (R) by
Theorem 3.1, we have proved that f € 45, ([ocj, ocw]]) and that ||f||A1 (5 2,)
<C||f||B; (o —pa?, 49D with a constant C depending only on « and the
windows w;.

(b) To estimate the Besov norm of f € 45, ,, we use the inverse estimate of
Theorem 5.1. As before we split « into a = ot + o,—, With o = 0 and o, < p.
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For 1<¢g <00, we define the principal expressions D;, by
o0

no, m— 1
Djy=) (2 "o ”(C(R)’Wj’ﬁ)

n=0

2" 1
X210 N o+ ) E (X (o el D) f >> :

v=0
Then,

l/q
% 1 1
|f|327q < C( E (2"“0)’” (Xp([aj’asﬂ])’ /s 02n>) >

n=0

N SN g O - 1
<Ly sup ||wj||C(R)< > 2 Z( sup “(C(R) Wi, an)
J=F 55

n=0 =0

on g\ 1/q
2,1# > (o X :H]),f)) )

<Ly sup ||w,||c<R)Z Z (32)

.....

In the estimate of Dj, for >0, we apply Lemma 6.1 to the sequence a, =
EY(X?([a, ,a]), f) and obtain

n m— 1
L R LA

. ” a\ /4
% ( Z <2n(6€},#) Z (v —+ l)uilEgl(Xp([a;, a;r]])’ f)) )
v=0

n=0

0 1/q
<|w,»|3wm< > QmEL (XM oD f))q>
< Clwjllgz, @lLf L

v+1

If u =0, then

00 q
DYy = Z <2’”‘ " (C(R) wj, >||f||XP(o/ o l])>

n=0

< U W Il

Summing over j and u in (32), we obtain the desired result. 1
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Note that these statements are not completely symmetric. The conclusion
is valid on the interval [a;,a, ], whereas the assumption is required on a
neighborhood of that interval.

Since B, %\(1), 0<a<1, consists of all a-Ho6lder continuous functions on 7,
Theorem 1.1 of the introduction follows from Theorem 6.1 as a special case.

To obtain a similar result for the real line, we have to modify the above
proof. Note that the treatment of sup,_, " *(C(R), W;,27"" 1) in (31)
does no longer work if either »r = —00 or s = co. We therefore impose a
slightly stronger condition on the windows w;.

THEOREM 6.2.  Assume that the set (Y =w;Cy:jeZ, keNoy} is a
Riesz basis for L*(R) and that inf;cz h; = hm1r1 > 0. If for some € >0, sup,z |
|Wl||Bif‘%(R) =K< oo, then

45, ,([R) =B, (R).

Proof. We only explain the necessary modifications.

By Theorem 3.1 the dual windows are in Bg‘j’go(R) and they satisfy sup;.z
1Willze @) = K-

We have to deal with the expression sup ez " *(C(R), w;, 27"~ N for u =
0,...,m. If p =0, then sup,; " (C(R), w,,2 =1y < K209 If 11> 0, then

Marchaud s inequality [27, Sect. 3.3.3.] implies that for m — 1 <a<m

sup " H(C(R), w;, 27" <K, 20",
JeZ

Substltutmg these inequalities into (30), and (32), we derive that 4% (R) =
(R) The estimates in this case are slightly easier and left to the reader ]
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